a2 United States Patent

Sauve et al.

US009176646B2

US 9,176,646 B2
*Nov. 3, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SUPPRESSING DIALOG BOXES

Inventors: Aaron J. Sauve, Seattle, WA (US);
Li-Hsin Huang, Bellevue, WA (US);
Tony E. Schreiner, Redmond, WA (US)

Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1327 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/007,842

Filed: Jan. 17, 2011

Prior Publication Data
US 2011/0113355 Al May 12, 2011

Related U.S. Application Data

Continuation of application No. 11/424,809, filed on
Jun. 16, 2006, now Pat. No. 7,873,915.

Int. Cl1.

HO4N 1/00 (2006.01)

GO6F 3/0483 (2013.01)

GO6F 9/44 (2006.01)

U.S. CL

CPC GOG6F 3/0483 (2013.01); GO6F 9/4443

(2013.01)
Field of Classification Search
CPC . HO4N 1/00432; HO4N 1/00464
USPC 715/764,777, 808, 809
See application file for complete search history.

APl Hook
intercepts
attempt to
show dialog
705 Inspect .
SuppressDialog() Dialog _{Active es
715 Context Jab? 72 '
Explicit call 720 \/
from Queue dialog
Application No in “pending”
(i.e. script-)\ list, aII:Jng . P—"
initiated wit ause threa
cases) ﬁckgraund\ associated using Modal Triggered?
710 Tab? 73}// event Message 755
- for user Loop 750 o
making tab
No active No
(Unknown thread) 745
Yes
P
Is this dialog allowed v,
«_ from unknown ’
NF

(56) References Cited
U.S. PATENT DOCUMENTS

4,833,802 A 5/1989 Volkert

5,918,239 A 6/1999 Allen et al.

6,005,575 A 12/1999 Colleran et al.

6,518,983 B1* 2/2003 Grohmann et al. 715/781

6,728,960 Bl 4/2004 Loomans

6,757,716 Bl 6/2004 Blegen et al.

6,778,194 B2 8/2004 Jones

6,925,459 B2 8/2005 Cornell et al.

6,978,473 Bl 12/2005 Nsonwu et al.

7,010,757 B2 3/2006 Stana et al.

7,017,119 Bl 3/2006 Johnston et al.

7,873,915 B2 1/2011 Sauve et al.
2002/0166000 Al* 11/2002 Rossietal.ccccoenn. 709/328
2004/0012538 Al* 1/2004 Bhogal ... 345/1.1
2004/0034794 Al* 2/2004 Mayeretal. 713/200
2004/0125149 Al 7/2004 Lapidous
2004/0141011 Al 7/2004 Smethers et al.
2004/0189712 Al 9/2004 Rundell
2005/0004844 Al 1/2005 Attia

(Continued)
OTHER PUBLICATIONS

“Advisory Action”, U.S. Appl. No. 11/424,809, (May 22, 2009),3
pages.
(Continued)

Primary Examiner — Shen Shiau
(74) Attorney, Agent, or Firm — John Jardine; Kate Drakos;
Micky Minhas

(57) ABSTRACT

A method for browser software with a tabbed interface to
suppress, or delay, the display of a dialog box that is initiated
by an inactive, or background, tab. An indication may be
provided to the user that a dialog box needing user attention
may be provided. When that tab becomes active, and the web
page on that tab becomes visible, the dialog box is then
displayed. This suppression method may be applied to a vari-
ety of application programs.

20 Claims, 7 Drawing Sheets

Block Dialog
740

Show Dialog

US 9,176,646 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0055405 Al
2005/0055412 Al
2005/0066290 Al
2005/0246659 Al
2006/0190831 Al

3/2005 Kaminsky et al.
3/2005 Kaminsky et al.
3/2005 Chebolu et al.
11/2005 Mengerink et al.
8/2006 Kelso et al.
2006/0253792 Al 11/2006 Grace et al.
2006/0271858 Al 11/2006 Yolleck et al.
2006/0271861 Al* 11/2006 Yolleck et al.
2006/0277472 Al* 12/2006 Yodoetal. ...

.. 715/760
715/738

2007/0016949 Al* 1/2007 Dunagan et al. . 726/22
2007/0028185 Al* 2/2007 Bhogal et al. 715/808
2007/0083813 Al* 4/2007 Luietal 715/709
2007/0294627 Al* 12/2007 Sauve et al. 715/760
2008/0046975 Al* 2/2008 Bossetal. 726/4
2008/0086738 Al* 4/2008 Nieminen ... 719/328
2008/0092063 Al* 4/2008 Canfieldetal. 715/753
2008/0196085 Al* 8/2008 Nagoyaetal 726/3

2009/0178116 Al* 7/2009 Nagoya et al. . 726/3
2009/0271842 Al* 10/2009 Baumhof ..o 726/1

OTHER PUBLICATIONS

“Final Office Action”, U.S. Appl. No. 11/424,809, (Mar. 9, 2009),13
pages.

“Final Office Action”, U.S. Appl. No. 11/424,809, (Apr. 28, 2010),14
pages.

“Firefox 1.5”, Retrieved from <http://www.mozilla.com/firefox> on
Apr. 7, 2006, (2005),3 pages.

“Google Toolbar Help”, Retrieved from http://www.google.com/
support/toolbar/bin/static.py?page=features. html&hl=en on Apr. 7,
2006, 3 pages.

“Non Final Office Action”, U.S. Appl. No. 11/424,809, (Jul. 22,
2008),16 pages.

“Non-Final Office Action”, U.S. Appl. No. 11/424,809, (Oct. 30,
2009),13 pages.

“Notice of Allowance”, U.S. Appl. No. 11/424,809, (Sep. 2,2010),11
pages.

“Super Ad Blocker Blocking Technologies”, Retrieved from <http://
www.superadblocker.com/product__sabblocking.
html#POPUPBlocker> on Apr. 7, 2006, (2004),2 pages.

Costa, Dan “Software Review: Mozilla Firefox 1.0 Review”,
Retrieved from http://reviews.zdnet.co.uk/software/productivity/
0,1000001109,39173153,00. htm?opinion . . . on Jul. 14, 2008, (Nov.
10, 2004),5 pages.

Edensoft, “PopUpCop Documentation—Customize Popups”,
Retrieved from <http://www.popupcop.com/help/help7 options__
popups.html> on Apr. 7, 2006, (2001),3 pages.

* cited by examiner

US 9,176,646 B2

Sheet 1 of 7

Nov. 3, 2015

U.S. Patent

| Did
I 2atnteieint et A
! e -
“ ! [195M01q paggel !
“ ! m e Bujuun. “
“ “ | 0zl “
“ ! ! J9ndwod juaiD '
! ! “ !
) 1 1)
1] 1 1
]] 1]
1) 1]
)) 1)
1) 1 [}
]] 1]
1] 1]
)) i)
) ! | szl i
]] 1]
“ ! I IOMIBN '
! ! 1e3.Y 8207 15414 '
i i ! i
“ 501 “ | |
“ 30MIBN ! i '
! e31y |BJ07 PU0D3S ! i '
1

! ! “ "
“ “ ! "
IIIIIIIIIIIIIIIIIIIIIIIIIIIII - _—IIIIIIIIII lIIIllIlIlIIIllIII_

T mmmmmmmmmmmmooeooeeeooooooooo-- -

|

m oLl

1 J91ndwo)

inqilN.l.la 13AISS 15414

|

|
Ll | SEL

‘_WHBQEOU _f J1OMIBN Baly apIM 001
J9AIRS pUOdSS o TTTTTTTTTmTTmTmmmmmmmmmmmmTT

US 9,176,646 B2

Sheet 2 of 7

Nov. 3, 2015

U.S. Patent

¢ DId 14V d01dd

c0¢
uoissaiddns

xoq bojeip 1noyum
195M0Jg 1auldlu|

00¢ 144
13smolg qel 1S4 uo abed qam
BuINdax3
J91ndwo)

0c¢
paAe|dsip
Apua.und
jou gel
punouibydeq
uo buneulbrio . olzgeL
xoq bojelp
Bundnualu)

re—— — 907

v e T

vlzqelL

9delialu| paqqel

disg sjool

Z1Z qel

$31110AB4 M3IA 1IPI 3|4

US 9,176,646 B2

Sheet 3 of 7

Nov. 3, 2015

U.S. Patent

€ DId

sqe)
punouabdeq
wolj $aXoq
bojelp ssaiddns
0] poylaw
Yam 135m0.q
punniIaxa
LOg 12andwo)

1445
sqe) punoubydeq
woJ4j $8Xoq
bojelp ssaaddns paAe|dsip
01 poylaw Yyim Ajauaaund jou pue
00¢ 13SMO0.g 12U (4033 . el punosbdeq uo .~ 0lgqeL
qel 1514 uo abed qam BulNeUIBLIO 07 XOQ e
bojeip passasddng
1A% - :
gel punoabddeq : -« 90¢€

9de}IaIU| paqqeL

ue uo xoq bojelpe |
40 9dudsaud ared|pul
01 qe] bulyse|q

/

[An ssauppy| :ssaippv

_dj3H S|00L seuiones MIIA UPI 3l4

Z1Lg qel

US 9,176,646 B2

Sheet 4 of 7

Nov. 3, 2015

U.S. Patent

0¥y
paAe|dsip xoq bojeiq

_ 0t
_ Buniem si
_ xoq bojelp e eyl 13sn an)

-

1T4%
Aejdsip xoq bojeip ssaiddng

0cy

I 00t

_ uolIsPIp

_ uoissatddns
| _Xoq bojeiq

14013
sgel punoibypeq
woJj saxoq bojelp
ssaiddns o031 poylsy

mou paAe|dsip 3q p|hoys

ON | xoq bojelp jI buluiwialxq

Sy
x0q bojelp Aejdsip 01 [jed 1dadu31u|

S0 pa423unodua
xoq bojelp e Aejdsip o1 ||ed
A

€Ot el Mau 01 peatyl ubissy

A

Z0¥ gel J3smouq mau uadQ

A
L0t Pullndaxa 1asmolg

US 9,176,646 B2

Sheet S of 7

Nov. 3, 2015

U.S. Patent

S Did

ON

SOA A

7 ops §
£1d1Ids wouy xoq Bojeip -

SBA

.2y Aejdsip 01 |[ed s1y1 S|~
Jqel Uc:o_mv_umn,_ " SSA
594 P e woJj xoq bojelp ~_ °N
.Yy Aedsip oy |jed siyy S| -
7 ozs
7 ¢49smouq

ON " ay3 wouy xoq Bojerp

<

. dy3 Aejdsip o1 jed siy3 s =

SOA

7 01s e
o) iqel S
N sanse ayn woJj xoq bojeip

ocy
mou paAe|dsip

9 p|hoys xoq
Bojeip I suiwislaq

-

syi Aejdsip o1 ed2 siyxr s|

US 9,176,646 B2

Sheet 6 of 7

Nov. 3, 2015

U.S. Patent

9 DI

909

S09

AlOWd WISAS

609

140}3
sqel punoubydeq
ol S9X0(
bojelp ssaiddns
01 poylaw yum
19smouq bunnoisxs
LO€ 191ndwo))

#0€ sgel punoabpeq
wody} saxoq bojelp
ssauddns 03 poylsw
Yum QQ§ 13smoug

279
Aeidsiq

¥09 €09
3AlIQ 1A3Q O/
|esaydiisd
sedeLIsIU| O/] 909]
Nnd>
\\\‘I}
eiRQg
/ 4 weabouy
Z19 \\J
S9INPORN
uun
BuISS3I0.44 oL9 weibo.d
e swelboud
INEK—— o oy [
TTIT \\lE\Sﬁm}
\ n bunessdQ
r(\
0zg 491depy o3pIA
[] ooooo
o9 [
m— =T=D W/
209 e €19 J1depy
JAOMIBN
sn 215A '
B , Vh 2l m
mO 58

009
3IOMIBN Baly [eI07

US 9,176,646 B2

Sheet 7 of 7

Nov. 3, 2015

U.S. Patent

Z DI

097
Bojeiq moys
SIA
SOA
J N

664 .
—— ¢patabbli] ——
Shaueag

052 doon
abessap

|epo buisn
peaJyl asned

Stz
dAIDR
qel bupew
195N 4oy
1UDAD
paielnosse
Yyum
Buoje ‘1si|
purpusd ul
pbojeip snsan

02
Bojeiq xoo|g

ON

_7SEL éSpealyi

umouun wouj

“-._pamoj[e Bofe|p siy1 s|

(peaJy1 umousjun)
ON

_OEL iqel

——— punoJbxdeg s|

SO

_SzLgel
S BAIDY S|

0zZ
1X91U0)
boelg
1adsu|

Sl
()bojeigssauddng

0LZ
(sased

paleniul
-1duas *a°1)
uonedddy
woJj
[1e2 22 1dx3

S04
pojeip moys
01 1}dwane
s1dadus1ul
}OOH I|dV

US 9,176,646 B2

1
SUPPRESSING DIALOG BOXES

PRIORITY

This application is a continuation of and claims priority
under 35 U.S.C. §120 to U.S. patent application Ser. No.
11/424,809, filed on Jun. 16, 2006 and titled “Suppressing
Dialog Boxes,” the disclosure of which is incorporated by
reference in its entirety herein.

TECHNICAL FIELD

This description relates generally to application programs
and more specifically to browser software.

BACKGROUND

Browser application programs are often used to access
information through the Internet or through company intra-
nets. Users often have multiple pages displayed at any time.
These pages may be from one web site, or from multiple web
sites. To facilitate switching between multiple pages, tabbed
browsers may be used.

Tabbed browsers generally allow programs onundisplayed
web pages to continue processing while the tab holding that
web page is inactive. This sometimes leads to items such as
dialog boxes or other user interface elements to be presented
to the user that are generated from web pages that are not
currently being used, thus interrupting the user from his or her
browsing experience in the web page currently being viewed.

For example, a page the user is not currently viewing may
pop up a dialog box asking for a user name and password and
the user may think the dialog box is from the currently active
tab. This could lead to incorrect information being entered, or
worse, a malicious site gaining access to valid username and
password information for another site. Aside from those kinds
of risks, it typically leads to a poor user experience to have
dialog boxes from inactive tabs displayed, interrupting what
the user is doing on the currently active, and viewed web
page. Alternatively, a browser may switch tabs to one that is
trying to display a dialog box. This may also lead to a poor
user experience, since the user may not notice that the active
tab has changed.

SUMMARY

The following presents a simplified summary of the dis-
closure in order to provide a basic understanding to the reader.
This summary is not an extensive overview of the disclosure
and it does not identify key/critical elements of the invention
or delineate the scope of the invention. Its sole purpose is to
present some concepts disclosed herein in a simplified form
as a prelude to the more detailed description that is presented
later.

The present example may provide a way for browser soft-
ware with a tabbed interface to suppress, or delay, the display
of'a dialog box that is initiated by an inactive, or background,
tab. An indication may be provided to the user that a dialog
box needing user attention may be provided. When that tab
becomes active, and the web page on that tab becomes visible,
the dialog box is then displayed. This suppression method
may be applied to a variety of application programs.

Many of the attendant features may be more readily appre-
ciated as the same becomes better understood by reference to
the following detailed description considered in connection
with the accompanying drawings.

10

15

20

25

30

35

40

45

50

55

60

65

2
DESCRIPTION OF THE DRAWINGS

The present description may be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein:

FIG. 1 is an exemplary conventional network utilizing a
browser for Internet access.

FIG. 2 shows a conventional computer running a conven-
tional tabbed Internet browser and displaying a conventional
dialog box generated from an associated background tab.

FIG. 3 shows a computer running a tabbed Internet browser
including a method to suppress dialog boxes generated from
background tabs and a method to indicate that a dialog box is
present.

FIG. 4 shows a flow diagram showing a method to suppress
dialog boxes from background tabs.

FIG. 5 shows a flow diagram providing additional detail on
the block of determining if a dialog box should be displayed
now.

FIG. 6 is a block diagram of an exemplary computer in
which a browser with a method to suppress dialog boxes from
background tabs may be executed.

FIG. 7 is a flow diagram showing an alternate implemen-
tation of the method to suppress dialog boxes from back-
ground tabs.

Like reference numerals are used to designate like parts in
the accompanying drawings.

DETAILED DESCRIPTION

FIG. 1 is an exemplary conventional network 100 utilizing
a browser for Internet access. In this network a client com-
puter 120 may run a tabbed browser to access the Internet.
Client computer 120 may be coupled to a conventional first
server computer 110 through a conventionally constructed
first local area network 125.

First server computer 110 may be coupled to wide area
network 135, which is conventionally constructed and may
include the Internet 130 or equivalent coupling methods for
providing wide area networking. As shown wide area network
135 is coupled to conventionally constructed second server
computer 115. In this example, second server computer 115 is
coupled to conventionally constructed computer 101 over a
conventionally constructed second local area network 105.

Local area networks 125 and 105 may include a plurality of
conventional computers (not shown) and conventional
peripheral equipment (not shown) coupled together utilizing
topologies (token ring, star and the like) and switching equip-
ment known to those skilled in the art. Those skilled in the art
may realize that other processor equipped devices such as
televisions and VCRs with electronic program guides, cellu-
lar telephones, appliances and the like may be coupled to the
networks utilizing conventional techniques known to those
skilled in the art.

A typical local area network 105 or 125 may include a
conventionally constructed ISP network in which a number or
plurality of subscribers utilize telephone dial up, ISDN, DSL,,
cellular telephone, cable modem, or the like connections to
couple their computer to one or more server computers 110 or
115 that provide a connection to the wide area network 135
via the Internet 130.

Client computers 101 or 120 may run a tabbed browser to
access the Internet, which may include a web page served by
software running on second server computer 115. The web
page may include script or other executable instructions that
could cause a dialog box to be display on client computer 120.
Those skilled in the art may realize that the computers 101,

US 9,176,646 B2

3

120 may be any number of devices, including a PC, cell
phone, Internet appliance, set top box, hand-held computers,
and the like.

FIG. 2 shows a conventional computer 200 running a con-
ventional tabbed Internet browser 202 and displaying a con-
ventional dialog box 220 generated from an associated back-
ground tab.

Internet Browser without dialog box suppression 202 may
have a tabbed interface 206 with multiple tabs. The example
shows three tabs, the currently active tab 210, with the web
page 204 on the first tab having a title in its tab “Title 1~
displayed. The other tabs, Tab 212 and Tab 214, are on web
pages not currently visible having titles “Title 2 and “Title 3”
in the tabs respectively. These pages could be viewed by
clicking on the appropriate tab on the tabbed interface 206.

While the pages on inactive tabs 212 and 214 are not
visible, they may be continuing to execute any code such as
initialization routines, client-side script and third-party con-
trol executable code that are on those pages. In this example,
the page having tab 214 has encountered code that has
brought up a dialog box 220. This dialog box tends to pop up
and distract the user. This can be confusing to the user, since
it may not be clear that the dialog box is not from the page he
or she is currently viewing. It could also lead to security
issues.

For example, a page the user is not currently viewing may
pop up a dialog box asking for a user name and password and
the user may think the dialog box is from the currently active
tab. This could lead to incorrect information being entered, or
worse, a malicious site gaining access to valid username and
password information for another site. Aside from those kinds
of risks, it typically leads to a poor user experience to have
dialog boxes from inactive tabs displayed, interrupting what
the user is doing on the currently active, and viewed web
page.

Such a browser 202 could be run on any number of differ-
ent hardware and software platforms, including but not lim-
ited to PCs, cell phones, Internet appliances, set top boxes,
hand-held computers, etc.

The present example typically provides a way to prevent
interruptions and provide a better user experience, by tending
to provide a way to suppress dialog boxes from web pages on
inactive tabs, until such time as those tabs become active or it
is desired to access these pages.

FIG. 3 shows a computer 301 running a tabbed Internet
browser 300 including a method to suppress dialog boxes
generated from background tabs 304 and a method to indicate
that a dialog box is present. Internet browser 300 may have a
tabbed interface 306. The tabbed interface may include a cue
such as a flashing tab to notify a user that a dialog box is
present. The three tabs 310, 312, and 314 are exemplary. A
plurality of tabs may be present. Tab 310 is the currently
active tab, with tab 312 and 314 having different web pages
loaded and hidden from view. Tab 314 is shown flashing
within the browser, indicating that there may be a suppressed
dialog box 320 originating on a background tab not currently
displayed, waiting to be displayed from the page loaded on
that tab. A flashing indicator may also be provided outside the
browser, such as from an operating system task bar or its
equivalent. Flashing can mean a blinking light, backlighting
the tab, or coloring the tab in alternating patterns. Other
methods of cueing the user may also be substituted fro flash-
ing. The user can continue working on Tab 310 without inter-
ruption. Dialogs can cause interruption in the processing of
information in the active tabbed window. However, with
background tab suppression of the dialog box processing in
the active window may continue uninterrupted.

10

15

20

25

30

35

40

45

4

Tab 310 is displaying a web page on first tab 302, with the
title “Title 1.” Tabs 312 and 314 have web pages titled “Title
2> and “Title 3” respectively, which are currently not visible.
Any ofthe tabs could be activated, causing the page loaded on
that tab to be displayed, by clicking on the appropriate tab in
the tabbed interface 206. In order to suppress the dialog box
320 as shown, a method to suppress dialog boxes from view
304 may be incorporated into the browser software. [f Tab 314
is clicked, the suppressed dialog box 320 would be displayed
in the active window with the corresponding web page titled
“Title 3.”

FIG. 4 shows a flow diagram showing a method to suppress
dialog boxes from background tabs 304. At block 401, 402,
403 code is running via the browser, tab, control, or script
execution process. A user or a web page may request a new
browser tab to be opened 402. A new thread may be started
and assigned for the new tab 403. A tab may make a call to an
API to display a dialog box. At block 405, when the call to
display a dialog box is encountered, the dialog box suppres-
sion decision logic 400 is invoked.

Block 400, dialog box suppression decision, comprises
several steps. First, block 415 intercepts the call to display the
dialog box. Block 420 determines if the dialog box should be
displayed now. If the dialog box should be displayed now,
block 440 may be executed and the dialog box is displayed.

If block 420 determines that the dialog box should not be
displayed now, block 425 is invoked, suppressing the dialog
box. Determining if the dialog box should or should not be
displayed may be determined by examining the thread ID
assigned to the tab in question and comparing it to known
thread IDs. The known thread IDs may be maintained in a list,
table, or their equivalent. Control may then be passed to block
430, which may cue the user that a dialog box is waiting to be
displayed. A cue may be made, possibly by flashing the rel-
evant tab 314 from FIG. 3 or other equivalent methods. One
skilled in the art may recognize that other types of cues could
be used indicate the suppressed dialog box, including other
visual displays, or sounds such as audible beeps, signals from
other devices, such as a Bluetooth enabled phone, or combi-
nations of various indicators, or the like.

FIG. 5 shows a flow diagram providing additional detail of
block 420 determining if a dialog box should be displayed
now. The procedure “determine if dialog box should be dis-
played now” 420 determines the source of the call to the
dialog box (Block 415 on FIG. 4). First block 510 determines
if the call came from the active tab. If it did (yes), the dialog
box may be displayed (block 440 on FIG. 4). If not (no), block
520 checks to see if the call came from the browser. If it did
(ves), the dialog box may be displayed (block 440 on FIG. 4).
Otherwise (no), a block 530 determines if the call came from
a background tab. If it did (yes), the dialog box display is
suppressed (block 425 on FIG. 4). Otherwise, block 540
determines if the call came from script. If it did (yes), the
dialog box is suppressed (block 425 on FIG. 4); if it did not
(no), the dialog box is displayed (block 440 on FIG. 4). One
skilled in the art may see that these tests could be performed
in any order, and the list of conditions tested could be modi-
fied.

An example of determining where the call to display the
dialog box came from involves using multiple threads within
the browser. In such a case, each tab would be given a thread,
as well as the browser or frame having one. The primary
indicator may be the Thread ID of'the thread that is attempting
to show the dialog, which can be compared against the known
Thread IDs of the tabs (and top-level window). In addition to
threads, other indicators may include context such as the
window handle being used to parent the dialog or a token

US 9,176,646 B2

5

previously assigned to the tab and passed along as context.
These indicators may be used independently or in conjunc-
tion with threads or each other. The outcome of this evalua-
tion may be: Background Tab, Active Tab, Frame (or
Browser), or Unknown Source.

It the source of the dialog is found to be a Background Tab
then the dialog may be queued by adding it to an internal list,
along with an event for that dialog. After the dialog is queued,
the source’s thread may be blocked, waiting for the event to
get signaled. The wait may use a “modal message loop”
which is a method of blocking the thread while still process-
ing a minimal set of Windows messages so that the Ul thread
is not completely hung, which could hang the entire applica-
tion.

Next a message may be sent to the Tab Band signaling a
dialog was suppressed. The Tab Band may respond by blink-
ing the correct tab. When a tab is selected to make it active the
list may be checked to see ifany dialogs have been suppressed
from that tab. If so the event to unblock the thread may be
signaled, allowing the dialog to be shown, and then removed
from the list.

If the source of the dialog is found to be an Unknown
Source, meaning that the application is unable to associate the
caller with any known tab, the dialog may be shown or
blocked entirely based on the security risk of showing that
dialog on top of the wrong tab. For example, if it is a script-
initiated dialog from a web page it would be blocked to
mitigate Ul spoofing attacks, but if it is a dialog from an
add-on within the application it would be allowed.

If the source of the dialog is found to be the Active Tab
Thread or Frame Thread then the dialog may be shown right
away.

One way to intercept the call to the “display dialog box™ is
to capture the call directly. For example, if a web page uses
script to call an API within a browser to display a dialog box,
the browser can directly examine the information inthe call to
the API to determine the source. Another way is to hook
operating system APIs for showing dialogs, capturing any
calls to the API and determine the caller before passing the
call on to the original operating system routine.

FIG. 6 is a block diagram of an exemplary computer 301 in
which a browser with a method to suppress dialog boxes from
background tabs may be executed. Exemplary computing
environment 301 is only one example of a computing system
and is not intended to limit the examples described in this
application to this particular computing environment.

A peripheral drive 604 may accept a computer readable
media 605, 606 that includes a copy of the method to suppress
dialog boxes from background tabs. The peripheral drive may
be coupled to an I/O interface 612 along with an /O device
603.

The 1/O interface 612 may be coupled to a bus structure
603, which also may couple to a hard disk 610, a processor
607, system memory 609, a video adapter 620 and a network
adapter 613.

Video adapter 620 typically couples a display 622 to the
CPU 606. Network adapter 613 typically couples a local area
network 600 to the CPU 606.

For example the computer 301 can be implemented with
numerous other general purpose or special purpose comput-
ing system configurations. Examples of well known comput-
ing systems, may include, but are not limited to, personal
computers, hand-held or laptop devices, microprocessor-
based systems, multiprocessor systems, set top boxes, gam-
ing consoles, consumer electronics, cellular telephones,
PDAs, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

6

The computer 301 includes a general-purpose computing
system in the form of a CPU 606, display 622, [/O device 603,
and peripheral drive 604. The CPU 606 can include one or
more processors (including CPUs, GPUs, microprocessors
and the like) 607, a conventional system memory 609, and a
conventional system bus 608 that couples the various system
components. Processor 607 processes various computer
executable instructions, including those to control the opera-
tion of computing device 301 and allows communication with
other electronic and computing devices (not shown). The
system bus 608 represents any number of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures.

The system memory 609 may include computer-readable
media in the form of volatile memory, such as random access
memory (RAM), and/or non-volatile memory, such as read
only memory (ROM). A basic input/output system (BIOS) is
typically stored in ROM. RAM typically contains data and/or
program modules that are immediately accessible to and/or
presently operated on by one or more of the processors 607.
Computing device 602 may include other removable/non
removable, volatile/non-volatile computer storage media.

A hard disk drive 610 is also a type of computer readable
media that may read from and write to a non-removable,
non-volatile magnetic media (not shown). Such a hard disk
610 may include a magnetic disk drive which reads from and
writes to a removable, non volatile magnetic disk (e.g., a
“floppy disk™) 605, or an optical disk drive that reads from
and/or writes to aremovable, non-volatile optical disk such as
a CD ROM or the like. In this example, the hard disk drive
610, and disk drive 604 are each connected to the system bus
608 by one or more data media interfaces 612. The disk drives
and associated computer readable media provide non volatile
storage of computer readable instructions, data structures,
program modules, and other data for computing device 301.

Mass storage devices (or peripheral drive) 604 are also a
type of computer readable media that may be coupled to the
computing device or incorporated into the computing device
by coupling to the bus 608. Such peripheral drive 604 may
include a magnetic disk drive which reads from and writes to
aremovable, non volatile magnetic disk (e.g., a “floppy disk™)
605, or an optical disk drive that reads from and/or writes to
a removable, non-volatile optical disk such as a CD ROM or
the like 606. This mass storage device may be representative
of'those storing the image or those being backed up.

In the example described above the plurality of backups
and process for restoring backups (202 of FIG. 2), restore OS
(204 of FIG. 2) may be disposed on the hard disk 610 or the
system memory 609. Computer readable media (“CRM”)
605, 606 typically embody computer readable instructions,
data structures, program modules and the like supplied on
floppy disks, CDs, portable memory sticks and the like. Such
CRM may be used to produce an initialization disk.

Any number of program modules or processes can be
stored on the hard disk 610, or peripheral drive 604, including
by way of example, backup files, an operating system, one or
more application programs, other program modules, and pro-
gram data. Each of such operating system, application pro-
grams, other program modules and program data (or some
combination thereof) may include an embodiment of the sys-
tems and methods described herein.

A display device 622 can be connected to the system bus
608 via an interface, such as a video adapter 620. A user can
interface with the CPU 606 via any number of different input
devices 603 such as a keyboard, pointing device, joystick,
game pad, serial port, and/or the like. These and other input

US 9,176,646 B2

7

devices are connected to the processors 607 via input/output
interfaces 612 that are coupled to the system bus 608, but may
be connected by other interface and bus structures, such as a
parallel port, game port, and/or a universal serial bus (USB).

Computer 301 can operate in a networked environment
using connections to one or more remote computers through
one or more local area networks (LANs), wide area networks
(WANSs) and the like. The computer 301 is connected to a
network 600 via a network adapter 613 or alternatively by a
modem, DSL, ISDN interface or the like.

The browser 300 with method to suppress dialog boxes
from background tabs 304 may be disposed on Hard Disk
610, or on computer readable media disposed on Peripheral
Drive 604, or the like. Browser 300 could also be disposed in
System Memory 609 or any other type of computer readable
media.

FIG. 7 is a flow diagram showing an alternate implemen-
tation of the method to suppress dialog boxes from back-
ground tabs. At block 705, a hook into the operating system
API may intercept an attempt to display a dialog box. Alter-
natively, in block 710, an executing script may call directly
into a browser to display a dialog box. In each of these cases,
a call may be made to a SuppressDialog method 715.

The context of the dialog may be inspected 720 to deter-
mine the source of the call. This may be done by comparing
the thread ID to known thread IDs, by comparing the window
handle to known window handles, or an equivalent method. If
it is determined 725 that it is an active tab, the dialog box may
be displayed 760. Otherwise, if it is a background tab 730, the
dialog box may be queued in a pending list 745. The thread for
that dialog may then be paused via a modal message loop 750
until an event is triggered 755. When the event is triggered
755, then the dialog may be shown 760. If the context 720 is
not a background tab 730, the source may be unknown 735. If
the dialog is allowed from unknown sources, the dialog box
may be displayed 760. Otherwise, the dialog may be blocked
740.

This pseudo code may provide additional information for
implementing the present example:

// Note: The parent HWND can be used as additional evidence for how to
// handle the dialog.

/

// dwFlags is used by the caller to control the behavior, such as whether
// this specific dialog can be shown from an unknown thread.

BOOL SuppressDialog(HWND hwndParent, DWORD dwFlags)

DIALOG__ CONTEXT context = GetDialogContext();
if (context == ACTIVE__TAB)

// Allow.
return TRUE;

else if (context == UNKNOWN_ THREAD)

if (dwFlags &
ALLOW_THIS_DIALOG_FOR_UNKNOWN_ THREADS)
// Allow.
return TRUE;
}
else
// Block.
return FALSE;

else // if (context == BACKGROUND__TAB)

AddDialogToPendingList();
HEVENT hEvent = CreateEventForTabSwitch();

10

35

40

45

50

55

60

8

-continued

while (!IsEventSignalled(hEvent))

// Need to pump some messages to prevent hang.
PumpMessages();

// By the time we hit this line the tab is now active and
// we can show the dialog.
return TRUE;

What is claimed is:

1. A system comprising:

one or more processing devices;

one or more computer readable media storing instructions

that, when executed via the one or more processing

devices, implement a tabbed web browser having amod-

ule configured to perform operations for dialog suppres-

sion including:

determining whether a request to display a dialog within
the tabbed web browser is generated by an active tab,
an inactive tab, or an unknown source by at least
determining whether a known thread ID is associated
with the request;

displaying the dialog when the request is generated by
an active tab;

suppressing the dialog, automatically without direct
user intervention, when the request is generated by a
background tab; and

blocking or displaying the dialog according to a security
risk associated with the dialog when the request is
generated by an unknown source.

2. The system as recited in claim 1, wherein the tabbed web
browser uses a plurality of tabs associated with a plurality of
threads such that each of the plurality of tabs has a unique
thread ID.

3. The system as recited in claim 1, wherein the determin-
ing whether a known thread ID is associated with the request
comprises ascertaining a thread ID that is assigned to a source
of the request and comparing the thread ID to one or more
known thread IDs.

4. The system as recited in claim 1, wherein the operations
for dialog suppression further include intercepting, by the
tabbed web browser, the request to display the dialog.

5. The system as recited in claim 1, wherein the operations
for dialog suppression further include outputting an indica-
tion configured to inform a user of the dialog when the dialog
is suppressed or blocked.

6. The system as recited in claim 5, wherein the indication
comprises a flashing tab.

7. The system as recited in claim 5, wherein the indication
comprises an audible beep.

8. The system as recited in claim 1, wherein suppressing
the dialog when the request is generated by a background tab
comprises suppressing the display of the dialog using a modal
message loop.

9. The system as recited in claim 1, wherein the operations
for dialog suppression further include, when the dialog is
suppressed:

causing a tab associated with the dialog that is suppressed

to flash to indicate presence of the dialog;

obtaining a selection of the tab associated with the dialog to

make the tab active; and

enabling display ofthe dialog in response to the selection to

make the tab active.

US 9,176,646 B2

9

10. The system as recited in claim 1, wherein the operations
for dialog suppression further include assigning a unique
thread ID to each of a plurality of tabs displayed by the a
tabbed web browser.

11. A method of suppressing display of a dialog within a
web browser comprising:

determining whether a request to display the dialog within

the web browser is generated by an active tab, an inactive
tab, or an unknown source by at least determining
whether a known thread ID is associated with the
request;

displaying the dialog when the request is generated by an

active tab;

suppressing the dialog automatically without direct user

intervention, when the request is generated by a back-
ground tab; and

blocking or displaying the dialog according to a security

risk associated with the dialog when the request is gen-
erated by an unknown source.

12. The method as recited in claim 11, wherein the web
browser is configured as a tabbed application that uses a
plurality of tabs associated with a plurality of threads such
that each of the plurality of tabs has a unique thread ID.

13. The method as recited in claim 11, wherein the deter-
mining whether a known thread ID is associated with the
request comprises ascertaining a thread ID that is assigned to
a source of the request and comparing the thread ID to one or
more known thread IDs.

14. The method as recited in claim 11, further comprising
intercepting, by the web browser, the request to display the
dialog.

15. The method as recited in claim 11, further comprising
outputting an indication configured to inform a user of the
dialog when the dialog is suppressed or blocked.

16. One or more computer-readable storage memories stor-
ing instructions that, when executed via one or more process-
ing devices, implement a tabbed web browser having a mod-
ule configured to perform operations for dialog suppression
including:

determining whether a request to display a dialog within

the tabbed web browser is generated by an active tab, an

10

15

20

25

30

35

40

10

inactive tab, or an unknown source by at least determin-
ing whether a known thread ID is associated with the
request;

displaying the dialog when the request is generated by an

active tab;

suppressing the dialog automatically without direct user

intervention, when the request is generated by a back-
ground tab; and

blocking or displaying the dialog according to a security

risk associated with the dialog when the request is gen-
erated by an unknown source.

17. The one or more computer-readable storage memories
as recited in claim 16, wherein the determining whether a
known thread ID is associated with the request comprises
ascertaining a thread ID that is assigned to a source of the
request and comparing the thread ID to one or more known
thread IDs.

18. The one or more computer-readable storage memories
as recited in claim 16, wherein the operations for dialog
suppression further include outputting an indication config-
ured to inform a user of the dialog when the dialog is sup-
pressed or blocked.

19. The one or more computer-readable storage memories
as recited in claim 16, wherein the operations for dialog
suppression further include, when the dialog is suppressed:

causing a tab associated with the dialog that is suppressed

to flash to indicate presence of the dialog;

obtaining a selection of the tab associated with the dialog to

make the tab active; and

enabling display ofthe dialog in response to the selection to

make the tab active.

20. The one or more computer-readable storage memories
as recited in claim 16, wherein the operations for dialog
suppression further include, intercepting the request as a call
made to an dialog application programming interface (API)
responsible for showing dialogs and determining whether to
display, suppress, or block the dialog based at least in part
upon information contained in the call.

#* #* #* #* #*

